A Remark on Propositional Kripke Frames Sound for Intuitionistic Logic

نویسنده

  • Dmitrij P. Skvortsov
چکیده

Usually, in the Kripke semantics for intuitionistic propositional logic (or for superintuitionistic logics) partially ordered frames are used. Why? In this paper we propose an intrinsically intuitionistic motivation for that. Namely, we show that every Kripke frame (with an arbitrary accessibility relation), whose set of valid formulas is a superintuitionistic logic, is logically equivalent to a partially ordered Kripke frame.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rudimentary Kripke Models for the Intuitionistic Propositional Calculus

DoSen, K., Rudimentary Kripe models for the intuitionistic propositional calculus, Annals of Pure and Applied Logic 62 (1993) 21-49. It is shown that the intuitionistic propositional calculus is sound and complete with respect to Kripke-style models that are not quasi-ordered. These models, called rudimentary Kripke models, differ from the ordinary intuitionistic Kripke models by making fewer a...

متن کامل

Truth Values and Connectives in Some Non-Classical Logics

The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...

متن کامل

Kripke semantics for fuzzy logics

Kripke frames (and models) provide a suitable semantics for sub-classical logics; for example Intuitionistic Logic (of Brouwer and Heyting) axiomatizes the reflexive and transitive Kripke frames (with persistent satisfaction relations), and the Basic Logic (of Visser) axiomatizes transitive Kripke frames (with persistent satisfaction relations). Here, we investigate whether Kripke frames/models...

متن کامل

Non-deterministic Connectives in Propositional Godel Logic

We define the notion of a canonical Gödel system in the framework of single-conclusion hypersequent calculi. A corresponding general (nondeterministic) Gödel valuation semantics is developed, as well as a (non-deterministic) linear intuitionistic Kripke-frames semantics. We show that every canonical Gödel system induces a class of Gödel valuations (and of Kripke frames) for which it is strongly...

متن کامل

Proof Search and Counter-Model Construction for Bi-intuitionistic Propositional Logic with Labelled Sequents

Bi-intuitionistic logic is a conservative extension of intuitionistic logic with a connective dual to implication, called exclusion. We present a sound and complete cut-free labelled sequent calculus for bi-intuitionistic propositional logic, BiInt, following S. Negri’s general method for devising sequent calculi for normal modal logics. Although it arises as a natural formalization of the Krip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010